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NGST and the Early Universe
• The Next Generation Space Telescope’s (NGST) mission is to

probe the extremities of the Universe in the infrared
– Earliest moments: Big Bang and the formation of the first stars
– The highest energies: Black holes and active galactic nuclei
– The most distant objects: Quasars

• Instruments must meet very stringent  requirements
– Sensitivity to low-energy IR photons (0.5-30 microns)

• requires cryogenic operation
– Long integration times to detect faint sources (>1000 s)
– High sensitivity (read noise requirement<10 electrons; goal is <3)

• In short, NGST instruments will be excellent radiation detectors.
– Radiation that would normally only contribute to TID can contaminate

data
• The need for unprecedented precision poses concerns:

– Primary and secondary environments more uncertain at low energies.
– Infrared Space Observatory saw higher-than-expected backgrounds.
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Become an Expert on the Unknown—Quick!

• Hubble’s Near Infrared Camera and Multi-Object Spectrometer
(NICMOS) is a natural place to turn for experience.
– Detectors are photovoltaic HgxCd(1-x)Te— similar to a NGST technology
– Ideal datasets and known radiation environment

• NICMOS darkframe data taken with filter wheel in closed position
– No illumination of detectors
– Several data sets taken at different positions in orbit and after different

passes through the South Atlantic Anomaly
– Purpose of data was calibration

• Understanding dark currents
• Cosmic ray rejection algorithms

– Note: only 70% of cosmic rays actually get rejected

– Use the detector itself as an environmental monitor
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Outline
• NICMOS detectors and their radiation response
• NICMOS Darkframe Data Sets
• Data Processing and Analysis
• Model of Detector Charge collection
• Implications of Charge-Collection Model for NICMOS
• Results
VII. Conclusions
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NICMOS Detectors
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Radiation Effects in NICMOS Detectors

• Effects of radiation in photovoltaic infrared detectors
– Prompt Direct ionization

• Primary particles—protons and electrons; higher energy means lower LET
– Random in location and usually time

• Secondary particles—mainly protons and electrons; lower energy, high LET

– May be spatially and temporally correlated with a primary
strike… or not

– Radioactivation
• Low energy electrons and gamma rays (alphas probably too short range)

– Rate decays exponentially with time.

– Persistence
• At 77 K, charge trapped in shallow traps results in increased dark current;

magnitude decreases exponentially with time (time constant ~160±60 sec.)

– Phosphorescence
• Light given off when trapped charge is released.  Very low charge yield, but

may result in a diffuse contamination.



Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002 8

NICMOS Darkframes
• Purpose is calibration of detectors

and cosmic-ray rejection routine
– Dark current measurement
– Cosmic ray rejection

• Datasets include
– Up to 17 frames with exposure

times from 0.3-256 seconds

336
minutes

10 minutesLight8/12/98

6 minutes8 minutesVery
Light

7/16/98

39 minutes10 MinutesLight5/20/98

6 minutes15 minutesModerate4/23/98

35 minutes30 minutesSevere3/25/98

Time
Since
Exposure

Duration of
exposure

SAA
exposure

Date

Table I: SAA Exposures

•Darkframes represent a range of
prior radiation exposure and time 
since last exposure.
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Darkframes Example I
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Darkframes Example II



Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002 11

Darkframe Processing and Analysis

• Data processing involves:
– Identifying pixels with high values
– Correlating pixel contents over time and with nearest and more distant

neighbors.
• Identifies hot pixels and gives some information about particle trajectory and

possible associated secondary particles.
• Looking for evidence of persistence.

– Identifying probable path lengths when possible
• Resolution is limited by pixel pitch and depth of charge collection (diffusion-

layer thickness)
• Particles incident at glancing angles provide more information.

– Assembling “hits” from individual pixel readings.
– Looking at temporal and spatial correlations in the data

• With 5 datasets, 17 frames per dataset and >65000 pixels per frame,
resulting data is unwieldy→ >5 Gbits and growing
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IR Detector Model

• IR detector model has 2 different
charge-collection regions:

– HgCdTe detector should dominate
– Silicon readout integrated circuit

• Note that charge is also collected by
two different mechanisms:

– Drift in the high-field depletion region
– Diffusion in the field-free region below
– Diffusion region much thicker

• diffusion can dominate

• Model is generalized from
S. Kirkpatrick, IEEE Elect. Dev. Lett., Vol.

ED-26, p. 1742.

• See the talk by Jim Pickel (D-1,
3:40)
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Primary Environment and
Charge Deposition
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Secondary Environment
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Secondary Environment (Cont’d)
Note that Most of the deltas have energies from ~100 keV to 
~1  MeV ⇒ LET of ~ 1000-2000 electrons/micron. 
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Implications of Model for NICMOS—
Diffusion Length



Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002 17

Cross-Talk and Diffusion Layer

Normal Incidence Hits to Center of Pixel

0.10

1.00

10.00

100.00

0 10 20 30 40 50 60 70 80 90 100

Diffusion Layer Thickness (um)

A
v

e
ra

g
e 

C
ro

ss
ta

lk
 (

%
)

Pitch=10

Pitch=20

Pitch=40

Crosstalk between adjacent 
Pixels depends on pixel pitch
and diffusion-layer thickness.

Selecting adjacent pixels with 
nearly equal counts allows us 
to estimate both crosstalk and
diffusion-layer thickness.

Best estimate is about 1% 
crosstalk, implying a diffusion
layer thickness of 5-10 microns
for 40 micron-pitch pixels.



Presented by Ray Ladbury at NSREC in Phoenix, AZ July 16, 2002 18

Comparison of Results to Model
• GCR environment predicts an average of 35-40 proton hits

– most proton hits yield ~8000-15000 electrons in the struck pixel.
– Maximum is ~35000 electrons, but with low probability

• What is responsible for these hits?
– GCR protons account for most hits in the 8000-35000 electron range

• ~50% of “proton” hit generate>8000 e- in 2 or more pixels
• ~20% of protons also generate deltas; may also contribute
• These two facts could account for frequencies seen in this count range

– Pixels with >35000 e– must be low-energy protons or light ions
– No evidence of systematic time dependence in these signals

11

33

44

8/12/98

64555>35000

242226211815000-35000

35244732298000-15000

Average7/16/985/20/984/23/983/25/98Electrons
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Secondary-Primary Correlations
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Secondary-Primary Correlations
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Comparison of Hit Size
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Hit Size: Model vs. Measurements
• Agreement is good at low electron counts (<1500 e-)
• Also good in the range expected for proton hits (~8000-15000 e-)
• Large events are not inconsistent with minimum-ionizing alpha strikes

– Also not inconsistent with moderate-energy protons
• Two main areas of inconsistency

– High end of proton range (~15000-35000 e-):
• May be understood as multi-pixel hits and/or deltas
• No clear time dependence

– 1500-5000 electron count range: discrepancy is ~6x
• No clear time dependence
• Inconsistency worse for frames with vary large events
• Range-limited secondaries??
• Effects of Si ROIC or need for model refinement?

• At low electron count (<1000), may be evidence of time dependence
– Some datasets exhibit downward trend with time.  Some do not.
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Conclusions and Future Work
• A model of charge collection and sharing is essential to

understanding radiation-induced backgrounds in IR detectors
– Diffusion plays a very important role in charge collection
– Understanding the charge yield can allow probable identity (or identities)

of incident particle to be established.

•  Backgrounds appear to be higher than expected in some cases
– 8000-35000 e- : protons and high-energy secondaries (deltas, etc.) ~15%
– 1500-5000 e- : discrepancy is significant, ~6x

• Causes could be range limited secondaries or issues with model

• Future work
– Investigate 1500-5000 e- range
– Examine possible associations of secondaries with primary hits
– Refine pattern recognition for particle ID
– Contribute to development of cosmic-ray rejection algorithms
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A New, Improved NICMOS
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